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A method is presented for transferring a conserved quantity Q from one generalized mesh to 
another when the volumetric density of Q is uniform within each cell of the original mesh. 
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Multidimensional Lagrangian hydrodynamics calculations must often be ter- 
minated prematurely because of severe distortions in the computing mesh. To con- 
tinue the calculation, it is then necessary to transfer the conserved quantities (such 
as mass, momentum, and energy) from the original distorted mesh to a new regular 
mesh. This process is called rezoning. A rezoning method for arbitrary quadrilateral 
meshes in two dimensions has recently been described by Dukowicz [ 11. Although 
this method can accommodate higher-order interpolations, the most important case 
in practice is that in which the volumetric densities of the conserved quantities are 
considered uniform within each cell of the original mesh (and ultimately the new 
mesh as well). In this special case, the rezoning problem reduces to the calculation 
of the volumes of overlap between cells of the original and new meshes. Our pur- 
pose here is to point out that this calculation can be performed in a particularly 
straightforward way. The procedure for doing so is similar in spirit to (and was in 
fact suggested by) the method of Dukowicz, but is simpler and more direct. It 
applies equally well in Cartesian and cylindrical coordinates, and formulas for both 
cases will be given. 

By far the most common type of generalized mesh is the arbitrary quadrilateral 
mesh, which is convenient to work with because it has the same simple topological 
and logical structure as a square or rectangular mesh. The arbitrary quadrilateral 
mesh is accordingly adopted as a framework for the discussion. As will be seen, 
however, the basic procedure is remarkably indifferent to the topology of the mesh 
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and is therefore likely to be useful for two-dimensional triangular meshes (and 
perhaps other meshes) as well. 

Restriction to the case in which densities are uniform within cells is tantamount 
to calculating the associated transport by upwind or donor cell differencing [ 11. 
This type of differencing is quite diffusive, and the present method is therefore not 
intended or recommended for rezoning on every time step, as is done in Eulerian or 
certain mixed Lagrangian-Eulerian calculations. It is expected that the method will 
be useful primarily for the occasional rezoning necessitated by mesh distortion dur- 
ing Lagrangian calculations. 

We first treat the case of Cartesian coordinates in the plane, denoted as usual by 
(x, y). Our basic building block is the formula for the area of an arbitrary polygon 
P. Let the sides of the polygon be labeled by the index s. The coordinates of the two 
endpoints of side s will be denoted by (x;, y”;) and (x”,, y,;). Which of these 
endpoints is considered point 1 is immaterial. (However, when side s is a segment of 
a mesh line, as it will be in what follows, it is usually convenient to let point 1 be 
the endpoint with the lesser value of the spatial index which varies along the line.) 
It is convenient to regard each side s as a directed line segment from point 1 to 
point 2, so that one may unambiguously refer to areas lying to the left and right of 
side s. These terms are defined with reference to an observer standing on the plane 
at point 1 and facing point 2. The area of the polygon P is then given by 

(1) 

where the summation is over all the sides of P, and EP is either + 1 or - 1 according 
as P lies to the left or right, respectively, of side s. Note that the endpoint coor- 
dinates (x; , y; ) and (x;, y;) are considered to be associated with the side s as a 
separate entity, and not with the particular polygon P per se. These coordinates, 
and the orientation of side s, would therefore remain the same for a second polygon 
P’ to which side s is common. In contrast, 6,: is associated with both side s and 
polygon P, as the notation indicates, and .sg’ would clearly be the negative of E:. (If 
P lies to the left of side s then P’ would lie to the right, and vice versa.) Equation 
(1) is a well-known formula [2] which is easily derived by integrating the identity 
V. r = 2 (where r = xi + yj is the position vector) over the area of P and applying 
the divergence theorem. 

Now consider a two-dimensional region which is subdivided into arbitrary 
quadrilateral cells by the lines of the old (original) mesh, and in a different way by 
the lines of the new mesh. The superposition of both meshes defines a network of 
elementary overlap areas which are not further subdivided by lines of either mesh 
(see Fig. 1). Each such overlap area lies entirely within a single cell of the old mesh 
and a single cell of the new mesh. The overlap areas are polygons whose sides are 
segments of the old-mesh lines and the new-mesh lines. The number of sides of each 
type, and the total number of sides, will be different for different overlap areas. 
Each side is common to two overlap areas, the one on the left (L) and the one on 
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FIG. 1. Overlap areas arising from the superposition of the old mesh (solid lines) and the new mesh 
(dashed lines). A typical elementary overlap area is shaded. 

the right (R), and these overlap areas may be considered to be associated with the 
side. A side which is an old-mesh segment is also common to two cells of the old 
mesh, and a side which is a new-mesh segment is also common to two cells of the 
new mesh. In either case, these cells may be unambiguously referred to as the L and 
R cells associated with the segment in question. 

Our objective is to apportion a conserved quantity Q, whose volumetric density q 
(Q per unit volume) is considered uniform within each cell of the old mesh, into the 
cells of the new mesh. (For example, if Q represents the mass M then q is the mass 
density p.) Consider a particular overlap area, and let q be the density of the old- 
mesh cell in which it lies. The overlap area A is given by Eq. (1 ), and the quantity 
dQ = qA is the contribution of this particular overlap area to the total Q of the 
new-mesh cell in which it lies. (We assume unit depth, so that areas and volumes 
have the same numerical values.) The final value of Q in this new-mesh cell is then 
the sum of the dQ contributions from all overlap areas that lie within it, and 
division by the cell area then yields the final value of the density q. It is clear that 
there is no creation or destruction of the quantity Q at any stage of the procedure, 
so the rezoning is conservative. 

It would be impractical, however, to actually perform the rezoning calculation in 
the manner just outlined. The key to making the procedure practical is the 
realization that according to Eq. (1 ), each of the overlap increments AQ is itself the 
sum of contributions associated with the individual sides of the overlap area. Thus, 
instead of naively sweeping over the overlap areas directly (which would require 
complex logic that would be inefficient and difficult to automate in a computer 
program), one evaluates the same contributions in a different order by simply 
sweeping over the sides or segments s. Each side s is common to two overlap areas 
and hence contributes to two Ap’s, namely AQL and APR. Since both of these con- 
tributions involve the common factor ~(.xJ; y; - x; y;), it is convenient to compute 
them at the same time. Of course, the way in which these contributions are 
calculated and used depends upon whether side s is a segment of the old mesh or 
the new mesh. 
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If side s is a segment of the old mesh then it is common to two adjacent cells of 
the old mesh, the L and R cells. The L overlap area associated with side .F lies 
entirely within the L cell, whose density is qt, while the R overlap area lies entirely 
within the R cell, whose density is qR. Both overlap areas lie entirely within the 
same cell of the new mesh, and therefore the contributions of side s to dQt, and 
dQR may be added to obtain the corresponding increment to Q in this cell. 
According to Eq. (1 ), the contribution of side s to dQL is iqL(x; y; -x; y;), while 
that to dQR is -iqR(x; v; - x; y;). The quantity Q in the new-mesh cell containing 
side s is therefore to be incremented by an amount 

A~=t(qL-qR)(X;y~-x;y;). (2) 

If side s is a segment of the new mesh then it is common to two adjacent cells of 
the new mesh, the L and R cells. The L overlap area associated with side s lies 
entirely within the L cell, while the R overlap area lies entirely within the R cell. 
Both overlap areas common to side s lie entirely within the same cell of the old 
mesh, whose density will be denoted by qo. The contribution of side s to dQL will 
then be an increment to QL, while that to dQR will be an increment to QR. The for- 
mer contribution is 

A,N = 4qcdx; y; - x; rf ), (3) 

and the latter is just -A:. Therefore QL is to be incremented by A:, while QR is to 
be decremented by the same amount. 

When a new-mesh segment coincides with an old-mesh segment, ambiguities arise 
and supplementary rules are needed to deal with them. The old-mesh segment does 
not then lie entirely within a single new-mesh cell but is common to two such cells, 
so that the new-mesh cell to which the increment A: is to be given is ambiguous. 
Similarly, the new-mesh segment does not lie entirely within a single old-mesh cell 
but is common to two such cells, and the density q. to be used in A,N is also 
ambiguous. One readily verifies that a proper treatment of such cases results if the 
ambiguities are resolved in a symmetrical way by adoption of the following rules. 
The increment A: for the old-mesh segment is evaluated in the usual way, and then 
Q in each of the two common new-mesh cells is incremented by fAp. The density q. 
for the coincident new-mesh segment is taken to be the average of the densities in 
the two common old-mesh cells, and then A,: is evaluated and used in the usual 
way. Of course, it is necessary to ensure that segment coincidences are correctly 
identified as such on both mesh sweeps, and this requires some care because of 
roundoff errors. An alternative approach, which is rather pedestrian but fully effec- 
tive, is to simply destroy any such coincidences by very slightly displacing the ver- 
tices of the new mesh in regions where coincidences might otherwise occur. 

It is convenient to sweep over all sides or segments s by sweeping along the lines 
of the old and new meshes, keeping track at all times of which cell of the other 
mesh the current segment is in. The required logic for doing so, including the 
associated testing for intersections that determine segment endpoints, is easily 
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automated and has exactly the same structure as that used to compute line integrals 
over the new-mesh lines in the Dukowicz method [l] (see Appendix). Here, 
however, we must sweep over the old-mesh lines as well as the new-mesh lines, but 
the same logical structure can handle both tasks simply by interchanging the roles 
of the two meshes. It is noteworthy that this logical structure is the only aspect of 
the procedure which depends on the topological character of the mesh. The basic 
procedure is therefore not inherently limited to arbitrary quadrilateral meshes. A 
corresponding logical structure for two-dimensional triangular meshes is readily 
envisioned, and analogous logic for other types of meshes could no doubt also be 
devised. 

The general procedure may therefore be summarized as follows. One first sweeps 
through all the lines of the old mesh, evaluating A: for each segment thereof by 
means of Eq. (2). The value of Q in the new-mesh cell containing segment s is then 
incremented by A:. Next one sweeps through all the lines of the new mesh, 
evaluating A,N for each segment thereof by means of Eq. (3). The value of Q in the 
new-mesh cell to the left of segment s is then incremented by A:, and the value of Q 
in the new-mesh cell to the right is decremented by A:. Ambiguities arising from 
coincident old- and new-mesh segments are to be resolved symmetrically, as dis- 
cussed above. Finally, after both mesh sweeps are complete, the resulting values of 
Q in the new-mesh cells are divided by the corresponding new-mesh cell areas to 
obtain the new-mesh cell densities q. The procedure involves one sweep through 
each mesh, as does the Dukowicz method. However, the present procedure is sim- 
pler, as it does not require computation and storage of auxiliary cell constants. It is 
conceptually simpler as well, provided of course that one is concerned only with the 
case in which densities are considered uniform within each cell. 

Extension of the procedure to cylindrical coordinates (r, z) is straightforward. 
The volume of revolution of a polygon P about the coordinate axis is given in 
terms of the side endpoint coordinates (r; , Z; ) and (r;, z;) by 

(4) 

This formula does not appear to be as well known as Eq. (1 ), but it may be easily 
derived in a similar way. Comparison with Eq. (1) shows that to treat the cylin- 
drical case, it is merely necessary to replace f(x; y; -x; yj) by 
(7r/3)(r”; + r;)(YJ;z; - r;z;) in the expressions developed for the Cartesian case. This 
must be done, in particular, in Eqs. (2) and (3). Once this replacement has been 
made, the entire procedure as already described applies equally to the cylindrical 
case (except of course that one now divides Q by volume rather than area to obtain 
the density q). 

Finally, it may be of interest to observe that the present rezoning method can be 
interpreted as a special case of an extended Dukowicz method in which the 
Dukowicz flux continuity condition (Eq. (5) of Ref. [ 11) is relaxed. In the Cartesian 
case, such an interpretation can be achieved by defining a flux vector F = fqr, where 
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q is the piecewise uniform density field defined by the old mesh. This flux satisfies 
the condition V. F = q in the interior of every cell in the old mesh, but V. F now 
contains delta functions at the old cell boundaries which are not present in the 
Dukowicz method. Consequently, the integral of V. F over an arbitrary cell of the 
new mesh is no longer simply the value of Q in that cell. This complication can be 
dealt with, however; the amplitudes of the delta functions are simply related to the 
discontinuities in q at the old cell boundaries, and their contributions can be 
explicitly evaluated. When this is done, the net result is precisely the present 
method. Of course, this interpretation and point of view are not particularly useful 
when the densities are considered uniform within each cell; the simpler and more 
direct approach of the present development then seems preferable. Iiowever, the 
foregoing observation does suggest that relaxation of the Dukowicz flux continuity 
condition will be of interest in connection with rezoning schemes based on higher 
order interpolations. 

APPENDIX: Outline of the Logic for Sweeping Quadrilateral Mesh Lines 

To illustrate the procedure for sweeping mesh lines and determining segment 
endpoints, it is sufficient to consider the case in which we are sweeping along a par- 
ticular line of the new mesh, as shown in Fig. 2. The same procedure of course 
applies with the roles of the two meshes reversed. Suppose that work has just been 
completed on segment ucl, so that we are located at the point a and are moving 
toward point h. We consider point a as endpoint 1 of the current new-mesh segment 
and we need to determine endpoint 2. As will be seen, this will also tell us which 
old-mesh cell the next new-mesh segment will lie in. Thus the fact that the current 
segment lies within cell (Z, .Z) of the old mesh was determined as part of the work on 
the previous segment, and may be regarded as given. 

FIG. 2. Illustration of the procedure for sweeping along a new-mesh line (shown dashed) passing 
through old-mesh cell (I, J). 
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The procedure begins by computing the points of intersection of the line segment 
ab with the line segments that form the N, S, E, and W sides of the old-mesh cell 
(Z, J). If there are no such intersection points then point b also lies within cell (Z, J) 
of the old mesh, and point b itself is endpoint 2. In this case the next segment of the 
new-mesh line will clearly also lie in old-mesh cell (Z, J). If one or more such inter- 
section points exist, the one nearest to a defines endpoint 2. In this case the next 
new-mesh segment will lie in the old-mesh cell adjacent to the side thus intersected 
by ab. For example, in Fig. 2 the intersection point /I with side N defines endpoint 2 
of the current new-mesh segment, and the next new-mesh segment will therefore lie 
in the old-mesh cell (Z, J+ 1) which shares side N with old-mesh cell (I, J). 

The procedure just outlined has the character of a marching method, in which 
one marches along a given line of one mesh determining each segment thereof, and 
the cell of the other mesh in which it lies, in a sequential manner. The topological 
structure of the mesh is used to determine which cell one enters upon leaving a 
given cell along a given line, and this eliminates the need to locate each new 
segment from scratch. Of course, in a computer program it is necessary to dis- 
tinguish and deal with certain special cases that have not been considered in the 
above brief description, such as the intersection of a line of one mesh with a vertex 
of the other. It would be inappropriate to dwell on such cases here, as their treat- 
ment is straightforward and is largely a matter of personal programming preference. 
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